Forklift Starter and Alternator

Forklift Alternators and Starters - Today's starter motor is usually a permanent-magnet composition or a series-parallel wound direct current electrical motor with a starter solenoid mounted on it. As soon as current from the starting battery is applied to the solenoid, mainly via a key-operated switch, the solenoid engages a lever that pushes out the drive pinion which is located on the driveshaft and meshes the pinion using the starter ring gear that is found on the engine flywheel.

The solenoid closes the high-current contacts for the starter motor, which starts to turn. When the engine starts, the key operated switch is opened and a spring inside the solenoid assembly pulls the pinion gear away from the ring gear. This action causes the starter motor to stop. The starter's pinion is clutched to its driveshaft by means of an overrunning clutch. This allows the pinion to transmit drive in only a single direction. Drive is transmitted in this particular method via the pinion to the flywheel ring gear. The pinion remains engaged, for instance because the operator fails to release the key as soon as the engine starts or if there is a short and the solenoid remains engaged. This actually causes the pinion to spin separately of its driveshaft.

The actions mentioned above would stop the engine from driving the starter. This important step stops the starter from spinning really fast that it could fly apart. Unless modifications were done, the sprag clutch arrangement would prevent making use of the starter as a generator if it was employed in the hybrid scheme discussed earlier. Normally a standard starter motor is intended for intermittent utilization which would prevent it being utilized as a generator.

The electrical components are made to function for around 30 seconds to be able to stop overheating. Overheating is caused by a slow dissipation of heat is because of ohmic losses. The electrical parts are meant to save weight and cost. This is actually the reason the majority of owner's instruction manuals used for automobiles suggest the operator to stop for at least 10 seconds right after each ten or fifteen seconds of cranking the engine, if trying to start an engine that does not turn over right away.

In the early 1960s, this overrunning-clutch pinion arrangement was phased onto the market. Prior to that time, a Bendix drive was utilized. The Bendix system works by placing the starter drive pinion on a helically cut driveshaft. As soon as the starter motor starts spinning, the inertia of the drive pinion assembly enables it to ride forward on the helix, thus engaging with the ring gear. When the engine starts, the backdrive caused from the ring gear allows the pinion to exceed the rotating speed of the starter. At this instant, the drive pinion is forced back down the helical shaft and thus out of mesh with the ring gear.

The development of Bendix drive was developed in the 1930's with the overrunning-clutch design known as the Bendix Folo-Thru drive, developed and introduced during the 1960s. The Folo-Thru drive has a latching mechanism together with a set of flyweights inside the body of the drive unit. This was an enhancement since the typical Bendix drive used in order to disengage from the ring as soon as the engine fired, even if it did not stay running.

As soon as the starter motor is engaged and begins turning, the drive unit is forced forward on the helical shaft by inertia. It then becomes latched into the engaged position. As soon as the drive unit is spun at a speed higher than what is achieved by the starter motor itself, like for instance it is backdriven by the running engine, and next the flyweights pull outward in a radial manner. This releases the latch and permits the overdriven drive unit to become spun out of engagement, hence unwanted starter disengagement could be avoided previous to a successful engine start.